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Abstract—The problem of a branched crack consisting of a main crack and a straight branch starting from one
of its tip located in an infinite elastic sheet is considered under the assumptions of two-dimensional theory of
Elasticity. Employing Kolosov-Muskhelishvili representation of the stress function and other well known
techniques the problem is reduced to the solution of an integral equation. The nature of the stress singularity
at the re-entrant corner, where the two branches of the crack meet, is discussed. Based upon a numerical
solution of the integral equation the stress intensity factors at the two tips are computed for two types of
prescribed traction at infinity and various geometric configurations of the branched crack.

1. INTRODUCTION

In brittle or quasi-brittle type of fracture, crack extension is often found to occur in directions
different from the plane containing the crack. These extensions are usually called branches and
several such branches may develop from the tip of a crack propagating at certain velocities[1, 2].
A slow process of crack branching of the type shown in Fig. 1 is observed during quasi-static
loading of brittle materials under bi-axial compression. This type of crack growth has been
explained (see Ref. [3], pp. 426-440) by a proper interpretation of the criterion of failure due to
Griffith{4] who considered randomly oriented elliptical flaws and proposed that fracture will
occur when the maximum tensile stress at the edge of one of the flaws reaches a critical value.

The Griffith-Irwin-Barenblatt hypothesis for crack instability successfully predicts the
critical tensile stress for a crack of given length in an isotropic material when the deformations
near the crack tip are of the opening mode or mode I type and under such conditions the crack
extends in its own plane. However, a combination of mode I and mode II type of deformations or
a pure mode II behaviour may cause development of branching cracks as shown in Fig. 1{5].
Such cracks are also found to occur in the stressing of anisotropic materials.

Although the phenomenon of crack branching is interesting and of great importance in
fracture mechanics, because of the mathematical complexity of the problem, very few attempts
have been made to investigate the nature of the stress field near a bifurcated crack. In this study
we consider a branched crack with two straight arms in an infinite sheet as shown in Fig. 2. It
consists of a main crack and a branch starting from one of its tip and is simpler than the crack
configuration shown in Fig. 1 from the view point of mathematical formulation. However, the
stress fieids near the tip of the branch for ihe two crack configurations wiii be aimost identical if
the length of the branch is small compared to that of the main crack. The two arms of the crack
configuration (Fig. 2) are of finite length and therefore, the stress field near each tip can be
characterized by the two stress intensity factors K; and K.

By the use of the Kolsov-Muskhelishvili representation [6] of the biharmonic stress function,
a mapping function due to Darwin[7] as well as an extension principle, the two-dimensional
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Fig. 2. Branched crack with two arms.

elasticity problem under consideration is reduced to the determination of a sectionally
holomorphic function 7(¢). The solution is expressed in the form of a Cauchy integral over the
line of discontinuity involving an unknown complex valued function which has to be determined
by solving an integral equation. The kernel of the equation is singular at the two end points, which
correspond to the junction of the two arms of the crack in the z-plane. This is a characteristic of
the non-holomorphic nature of the function 1 ({) at these two points. It is shown that the solution
7({) yields the well known stress singularity at the re-entrant corner[8]. The integral equation is
numerically solved and the stress intensity factors are obtained for two types of prescribed
tractions at infinity and various geometric configurations of the branched crack. No attempt is
made here to propose any criterion for the development of branching cracks or their extension.

It should be noted that the crack configuration shown in Fig. 2 was also considered by Hussain
et al.[9]. Their aim was to obtain the limiting value of the strain energy release rate at the tip of
the branch when its length approaches zero. Based on the hypothesis that the branch will develop
in a direction in which this limiting value is a maximum they proposed a criterion of crack
instability for mixed mode loading conditions. The work[9] also contains the results of an
experimental investigation with a crack tip under a state of mode II type of deformation. The
proposed criterion is found to be in better agreement with the experimental results than the
“Maximum Stress” concept[4, 5, 10].

Andersson[11] attempted to obtain the stress intensity factors at the tips of a star-shaped
contour and we have made use of some of his results here. Andersson’s formulation however,
contains an error[12] due to which his results and conclusions are not reliable, although it has
been suggested that they are good when the lengths of the branches are small compared to that of
the main crack.

2. FORMULATION OF THE PROBLEM

We consider a branched crack in an infinite sheet and introduce the co-ordinates x, y as shown
in Fig. 2. The length of the main crack is taken to be unity (% = 1). The branch is of length r% and
it makes an angle -8 with the x-axis. Use will be made of the following mapping function due to
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Darwin[7] to transform the crack contour and its exterior onto the region |{| =1 (see Fig. 3).

z=x+iy=w({)= Al —e™( ~e)" )]
where
i =m—0 )
77)\2 =q + 6
and A is a real constant.
[
P1 (c l(l|)
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Q, (e'"?) o L
T. ®
S5 2 -
° Q, e'™)
Py(e'%2) K
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Fig.3. Branched crack transformed onto the unit circle in {-plane.

The circle |{|=1 corresponds to the crack contour. The points Pi({ =e™; j=1,2) both
correspond to the origin in the z plane. w(e"") and w(e'*) however, lie on the upper and lower
faces of the main crack, respectively. Points Q;({ =e™; j = 1,2) correspond to the crack tips 1
and 2. The constant A in equation (1), a:, a», 8, and B. are obtained by solving the following
system of equations (see Ref. [11]).

(11)\1+C¥2)\2=21T (3)

2 —
> M cot (""—2@)=0; 1=1,2 @)
2 B -a A,
4AT]|sin (u)
k=1 2

Equation (3) has been obtained by demanding that the point { = 1 corresponds to a point on the
surface of the main crack, i.e. arg (w(1)) = 0. Consequently the arc P,Q,P.(S)) of the circle |{| = 1
maps onto the main crack and the arc P,Q.Px(S-) corresponds to the two surfaces of the branch.
The set of equations (3-5) was solved for various values of 6 and r% with the help of an iterative
scheme.

It is clear that the mapping function w({) has two branch points P, and P, and the branch cut
may be chosen as any line joining P, and P, inside or on the unit circle. Here we will assume that
the cut lies inside the circle (say the line P,OP, or the straight line P,P>).

Complex representation. Following Muskhelishvili[6] we introduce the two functions ¢ (¢) and
¥ ({) holomorphic outside the unit circle except at the point at infinity such that

=rf; 1=12 %)

ox + 0, =4R e{¢' (D)0’ ()} Q)
0y = 0% + 2iTey = A0 (D" (Dl (O] + ' (OH o' ().
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Since the crack surfaces are free of stresses we have for { =t =¢“; 0<q <2m,
ot) — —

¢(t)+=—==0¢'(t)+¢(t)=0 @)
w'(t)

The quantlty ( ) can be written as

ot) _o)fe®)__o@) _1
w'(t) w(t){w’(t)} w(t) tg(t) @

where
(92)

/\26
= +
g(t) 1 euxl+ t _eluz

— aif — alB;
(t—e™)(t—-e™) (9b)

T et -e)

and

N’

(t
t

e

=K:=1, Osarg(t)=qg<a,

N’

£

(12<l]$277‘

(t lieson S, = P,Q.P)) (10)

=K2=e—216; a1<q<a2
(t lieson S, = P,Q,P>).

Equation (9b) follows from (9a) since the zeroes of g(t) should be the same as those of w'(f). In

view of (8-10) equation (7) can be written as

t lieson S,,, m=1,.2. (11)

t6(t) - (t)qs FO+ D =0;

Denoting the regions P,OP,Q, by T, and P,OP,Q. by T (see Fig. 3), the definition of ¢(¢),
originally defined outside the unit circle, is extended to the regions T; and T’ by writing

n({)={6(¢) —g({)rb 6'(1/)~ L5 (110);
(12a)

¢ liesin T.,; m=1,2

where
faip =£arp (12b)

Since K, # K, the function 5({) is discontinuous across the piecewise smooth line L = P,OP,
If the direction P,OP- is considered positive [see Fig. 3] then we have
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. _ K -1
n(o) —n(o) =Hr—r_)¢ (;);aonL (13)
where
K=K, -K,=1-¢7" (14)

We now investigate the behavior of the function 7({) as { approaches infinity. Let N, and N,
be the principal stresses at infinity and ¢, be the angle between the x-axis and the direction of N,
writing

r=T=

I

(N:+Ny)

-

and

= —% (N, — Ny) 2% (15)

we have for |£| > 1 the following series representation for ¢ (¢) and ¢({)

S)=TAL+A L+ AP+
¢(§)=F'A{+Bl/{+32/{z+... (16a)

where A is the real constant appearing in the mapping function w({) [see equation (1)] and A, B,
(i=1,2,...=) are complex constants. Hence as { »x

n()-»T A+ A, (16b)

3. THE SECTIONALLY HOLOMORPHIC FUNCTION %(¢)

In view of equation (11) and the extension principle (12a, b) n({) is holomorphic in the
entire plane except at the point at infinity and on the line L. More over it is continuous from the
left and from the right at all points of L with the possible exception of the end points of L, i.e. P,
and P,. These points, however, correspond to the origin in the z-plane, where the displacements
must be bounded. It is easy to show that ¢ () and therefore % ({) must also be bounded as { - P,
(or P,) from the left or from the right of L and the discontinuity F(c) given by (see equations (13,
14))

F(o) =-g-%$(1/a); gonlL amn

must approach zero as o = P, (or P»). The nature of these zeroes is discussed in the next section.
The function F(o) satisfies the Holder condition on L and with the help of (16b) the sectionally
holomorphic function n({) can be expressed as [6, 13]

__1__ F(o) 2
10=55 [, T do+TAL+ A, (1)

where the integral is taken from P, to P, and A, is yet an undetermined constant. Substitution of
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n(¢) = {({), division of both sides by ¢ and subsequent differentiation after a change in the
order of differentiation and integration yields

' F(cr) F(o) _A
¢'()= 2771{,[ d +2m{f © zd +T A 7 (19)

Replacing { by 1/&0; 0o on L and making use of (12b) and (17) we obtain

g(cro) F(oo) _ _F(o) __F(o) L
h 27T1J- (0'*1/0'0) Zﬂlf (0.__1/ 0) d0'+FA Aao (20)

where g(o,) is given by (9a, b). The above equation may therefore be written in the form

F(Uo)=fL M(O’, (To) F(O’) do +f1(0'0). (21)

1oy

The kernel M(o, o,) is bounded and continuous on L except at the ends, i.e. when o = ¢o = ';
j =1,2, where it becomes unbounded because of the second integral in (20). This behavior is a
characteristic of the type of zeroes of F(¢), which influences the nature ¢({) near the end points
of L. We make use of equation (20) to study this behavior in the next section.

4. THE ZEROES OF F(o) AT THE ENDS OF L
Since F(o') =0 at the ends of L the second integral in (20) can be written as

_Flo) 4,-0of Flo) -
2771,[ (a-—l/m,) 2mi (a—l/ao) @)

We now restrict our attention in the neighborhood of one of the ends say e“2=b and
following[13] write F(c) in the neighborhood of that point as

F(o)=F%(o)o - b) "+ Fi(o)o - b)™ (23)
where 7. is the complex conjugate of y, and 0 < Re(y,) < 1. F¥(a’) and F3(o) satisfy the Holder

condition near and at b and (¢ — b)™ is any definite branch which varies continuously on L. If y,
is real, one can take F¥(g) =0. In the neighborhood of b, F'(¢) can be written as

(1~1v2) F’{‘(U)_,_(l ‘Yz) Fi(o)

PO =" w-br

+ F¥(o) (24a)

where F%(o) satisfies the Holder condition near b, but may be unbounded at b. However, if it is
unbounded we have

Co

IF?(O’)' <= I blzo

(24b)

where Co and €, are real constants such that e, < Re(y.).
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Next we examine the behavior of the integrals

F(o)
2‘77'!,[ g — {od

and

1 [ F(o)do
27 L (T—{o

when {, is near b =e' but not on L. Using the results in chapter 4 of Ref.[13].

1 [ F(o)do
i) o—{ >0 23)
as {o approaches b along any path.

1 [ F(o)do_ e ™ (1—1v,) F¥(b) e_yﬁ(l ¥2) F3(b)
2ari L 0'—{0 - 2i Sin’)’zﬂ'({o—'b)‘rz 2i Sln‘Y2‘7T(£o—b)‘72

+ q)o({o) (26a)
where ®o({o) may be bounded or unbounded as {,— b. However, if it is unbounded we can write

[Pl < 7= (26b)

where C; and e, are real constant such that e; < Re(y.).
Substitution of (23) and (9a) in the left hand side of (20) yields the following expression when
g0 is on L and in the neighborhood of b = e,

slonflod e 2 {FHo ) (T 4 e @

where
Fi(og)=>0  as ao—>b.

If we now take g, = R.e' where R is in the neighborhood of 1 and {0 = 1/, = *2/R we have

(Go=b)*=(1-R)"e """
(0,0 —_ b)‘rz = (1 _ R)~72 e—l(1r+a2)'72 (28)

and

a R )* giea,

(fo—b)==
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Substituting (25-28) in (20) and equating like singularities of the form (1 - R)*> as R — | in the two
sides of the equation

(1= y2) F1*(b) | AF¥*(b) _ 0

2i sin y.7r K (292)
where K is given by (14),
F¥4(b) = F¥(b)e "™
and
F3*(b) = F¥(b) e """, (29b)
Similarly consideration of like singularities of the form (1 — R)” as R > 1 yields
(1= 72) F*(b) , LFTHb) _ (30)

2i sin ¥ K

Considering the two homogeneous equations (29a, 30) and noting that |K|=2sin 7\, we can
obtain the following transcendental equation for the determination of vy,.

(]—‘)’2) sin 7T)\2=iA2 sin Y2 (31)

It may be noted that if v, is a solution (31) 7, is also a root.
In case vy, is real we take F%(b)= F%*(b)=0 and obtain the following equation by
considering singularities of the form (1-R)™ as R-1

(1-72) FT*(b)  AF1*(b) _

2i sin y7r * K 0 32
If we now wr_ite F¥*(b) = F«b) + iFs(b) and separate the real and imaginary parts of (32) after
substituting K = 1—¢'*™ we obtain the following two homogeneous equations.

[(1— y2)(1 — cos 2wA)]Fa(b) + [2A; sin yzm + (1 — 5) sin 27wA,)Fs(b) =0
[(1 — v2) sin 27A2— 2A; sin yam ] Fo(b) — [(1 — vy2)(1 = cos 2wA;) | Fs(b) = 0 (33)

which yield the same transcendental equation (31) for determining ..
By restricting our attention in the neighborhood of the end e = a of L, if we write F(c) in

the form (23) where b and y. are replaced by a and v, respectively, and follow the procedure
which has been outlined above, we obtain the following equation for vy,

a- 71) sin 7A; = %A, sin Y17 (34)

Although we have obtained (31) and (34) subject to the condition 0 < Re(y,)<1;j =1, 2, the
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above procedure can be readily extended for a wider range of values of y; and in particular when
Re(y)<0. The possibility that Re(y;) >1 is excluded, since the displacements have to be
bounded at the origin in the z-plane. If we substitute 1 —y; = A;8;;j = 1,21in (31, 34) we have

A8 sin (A;) = £ A; sin (wA;6)); j=1,2. (35)

The above transcendental equation was obtained by Williams {8] who considered displacement
field of the form r.% f(8o) (Re(§;) > 0) in a wedge; ro, 0o is a polar co-ordinate system with the
origin at the apex and the surfaces 6, = 0 and 6, = 7A; of the wedge are free of stresses. With the
help of equations (1, 6, 19, 22, 26, 35) it is easy to show that the stress fields in the vicinity of the
origin in the z-plane, i.e. near {, = e';j = 1, 2, are similar to that considered in [8]. This similarity
should be obvious from physical considerations. Williams also discussed the nature of the roots
of (35). From his discussions we can conclude that if 1 <A, <2,i.e. 0 < 8 < 7 (see Fig. 2 and eqn.
(2)) there exists at least one root 8x(or y-) such that

0<Re(8)<1 (36)

or

1~ A< Re(y,)<1

which vields a stress singularity at the re-entrant corner at z =0.

5. ASYSTEM OF INTEGRAL EQUATIONS AND NUMERICAL SOLUTION
The function F (o) has to be obtained by solving the equation (20) which contains an unknown
constant A,. To determine this constant we investigate the behavior of n(¢) as / > 0". With the
help of (9a, 16, 12b) it may be shown that in the neighborhood of { =0

L R 2
0" T+ (A + e ™) £ +0(L)

¢'0/)=TA-0(? 37
and
WA =T A+0(>).
Hence (12a, 10) yield
70 =-TA-T A (38a)

Use of (18) and the Plemelj formulae for the corner point { = 0 (see Appendix 2 of Ref. [13]) gives
us

+_ 02— 1 [ F(a)
nO) = 2= FO)+5 - L £ 40+ A, (38b)

where Cauchy Principal value of the integral is considered, i.e.

1 F(e), _ 1 [ F(a)-F(0)
27 Jo -—;—do- T 2mi L o do (39)
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since by the choice of the branch of the logarithmic function log (¢*%/e*) = —i[27 ~ (a2 —

Now, since ['=T, (17) and (37) vield

F(o)=—KTA + KTA(A e ™ + A6 ")a +0(c?)

and
F(0)=—-KT A.

Equating right hand sides of (38a; 38b) and making use of (39, 40) we obtain
A, =AA0—L.J’ F@)=FQ) 4
2mi ). o

where

a2~ Oy

27

Ao=-T-T'+ KT

K being given by (14).
Substitution of (41a) in (18) and a little manipulation yields

— ol — '™
Q=57 f f(o) } do Kfnf“ (1og§ ; “logt {e. )+I‘A§2+AA0
where
fioy=E@=FO
and
{—e\ _ ,
log ( 7 ) =log ro+ i
when
4 _ge..., = roe'%

al)].

(40)

41a)

(41b)

(42a)

(42b)

(42¢)

(42d)

6o being assumed lie between —7 and 7. We now introduce two complex valued functions H,(r)

and H(r) of real variable r, 0<r =<1 such that

Hi(r) =%+

XA [e*f(re™)—KT A}, j=1,2.

From (40, 42b) and the condition F(e')=0, j = 1,2 we have

H,(0)=T[e™ (A&7 + A6 ") — 1]

(43a)

(43b)
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and
H;(1)=0. (43¢c)
From (43a) we have
f(re™)y=KA e™[H(r)+T1; j=12 (43d)
Writing the integral in (42a) as a difference of two integrals, one over OPx(g = re) and the
other over OP,(c =re™) and substituting (43d) we can obtain an expression for ¢({).

Differentiation of this expression with respect to ¢ (after a change of the order of differentiation
and integration) yields

¢ __K_ Il H?(r)dr _I’ H:(r)drz
e plca

+ F(log 4 _;% ~logt }em!)} +T ~—?‘§ 44

where the logarithms are evaluated according to (42c, d).
If we now take

Tok =Re‘°"; k=12 (45)

from (17, 12b, 42b, 43b) we have
U)o (RELER) + (R - D T) (0

where g{ow) is given_by (9b).
Replacing £ by /oo = "R in (44) and equating the right hand side of the resulting equation
with that of (46) we obtain, after a little algebraic manipulation, the following set of equations.

Liy(r,R) H; (r)dr + ak(R)] +h(R)+T hk(R)+%?dx(R):
k=12 (@

- R RE® = £(R) [2 0

where
Kh.(R)=(Re® —e™)Re®~e™*); k=1,2

—— R
fiR) = fR) =%(Rp -DR-1

a:(R) = ax(R) =TTlog(1- Rp) —log(1 ~ R)]
Kby(R) =Te™ A& (Rp — 1)+ Ae"«(R ~ 1)}
Kb:(R) =T e 2[A1e"(R — 1)+ A"(Rp — 1)] (47b)
d\(R) = dx(R) = —2mi f(R)
1

Lu(?’, R} = Lzz(f,R) = ”m

————ee 1
L]z(l’, R) = L21(I‘, R) =m
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In (47a,b)
p =g, @7¢)

K and A, are given by (14) and (41b) respectively, and the logarithm in the expression for a(R) is
to be computed according to (42c, d).

The system of equations (47a) is more suitable for numerical computation than (20) or 21) and
to convert (47a) to a discrete system we can make use of a quadrature formula of the form

N+1

[ winar=; swin 48)

where the interval [0, 1] is divided into (N + 1) divisions, r; = / /(N + 1) and S, is the weight for /th
term in the sum. Since H;(1) =0; j = 1, 2 and H;(0) are given by (43b) we can write the following
discrete system for (47a)

2 N

—he(Rn)He(Rr) = fi(Rm) [@ ; SiLig(n, Rm)Hj(f:)] + fe(Rm)ax (R} + €]+ bi(Rom)

hR) + R R k=1.2,m=12,...N 49)
where
m
Rn =51
and
er==e=T So[d2—Ai—A2p + Aip], (50)

p being given by (47¢). It may be noted that although L., and L., [eqn. (47b)] are unbounded
when r = R = 1, Ly(n, R.) is always bounded since { and m are never equal to N + 1. It may be
mentioned here that numerical solutions of integral equations with kernels which are unbounded
at an end point have been attempted in the past (see for example {14]) by techniques similar to the
one followed here.

Equation (49) is easily converted into a linear system of 4N equations for 4N real unknowns
which can be solved on a digital computer. For brevity we omit those details here. After the
solution is obtained the following version of (44) can be made use of to obtain ¢’ ({) when { does
not lie on L.

¢;§D = 215(2 2 (rffﬁT;)=*2 (,ffi‘(_"i)z

4 {
+ (logg_gei%mlogg_ge'al>+el]+F—?—20 (51)

where e;, As and K are given by (50), (41b) and (14), respectively and the logarithms are
evaluated according to (42¢, d).
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6. RESULTS AND SOME OBSERVATIONS

The cracktips in the z plane correspond to the points Q;(t; = e®/; j = 1, 2) on the unit circle in
the {-plane (Fig. 3). If we introduce a local polar co-ordinate system rq, 8, in the z-plane with the
origin at the crack tip such that 8, = =7 are the surfaces of the crack then in the conventional
notation of Fracture Mechanics

1/2
g.+0,=Re {KC(}ZT) e'“"”’} +0(rg?) (52a)

0
where K. is the complex stress intensity factor defined as
Kc - Kx - iKn. (52b)

In (52b) K; and Ky are the stress intensity factors for opening (I) and shearing (II) mode,
respectively.

In our formulation o, + o, is given by the first of equations (6). Since we have assumed that
the branch cut for the mapping function w({) is inside the circle || = 1 it is permissible to write a
power series expansion of w({) in the neighborhoods of ¢{ =t, =e*; j =1, 2. With the help of
this expansion and equations (6, 52a) it can be shown that the stress intensity factors K.;j =1,2
at the tips are (see [11] and [15])

i 2¢'(t) .
i . =
Kc {’ﬂ' eiu’w "(tj )}172’ ] 1’ 2 (533)

where
v = 0

v2=m7—60

. 1 -l 3
0"(t) = B e (53)
and

[1- Ci(B‘_B’)]rf el ®
(eiﬁ2 - eia,)(eiﬁz _ euxz)

w"(t)= (53¢)

r¥ and 8 being the length and orientation of the branch, respectively (Fig. 2). It is necessary to
compute the square root of the complex quantity C = ree'* appearing in (53a) as ro” &'
where 6, lies between —# and . After ¢'(#) are computed with the help of (51), the stress
intensity factors K; and Ky at each tip are easily obtained with the help of (53a) and (52b).
Figures 4 and 5 show their variation with r% and § when I" =2I' =0-5; i.e. for a uniform unit
tensile stress perpendicular to the main crack at infinity. Figures 6 and 7 give the values of K;and
K at the two tips for a uniform shear stress at infinity, i.e. I' =0, I" = i. In the Figures (4-7) r¥ is
plotted on a lograithmic scale since it is varied between 0-001 to 1-0. 8 is varied from 15° to 90° at
an interval of 15°. For 8 = 0° we have the classical case of a straight crack of length larger than
unity.

Trapezoidal rule with equal divisions was employed for the quadrature formula (48). For
r¥>0-01 a value of N =20 was sufficient to obtain the stress intensity factors accurate up to 3
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Fig. 4. Stress intensity factors at tip 1 for uniform tensile stress perpendicular to main crack at infinity.

decimal places. For smaller values of r} a maximum value of N =30 was chosen. It was
however, necessary to put more points near the end r = 1 to obtain the desired accuracy.

As expected for small values of r¥ the intensity factors at the tip of the main crack (Figs. 4, 6)
are practically equal to those at the tip of a straight crack in an infinite sheet. At the tip of the
branch (Figs. 5, 7) the stress intensity factors vary quite smoothly for small values of r%, i.e. for r%
of the order of 10~°. However, in general they are not close to the results obtained in [11, 12] and
[9]. Although it has been suggested that the results obtained in {11, 12] are good for small values
of r%, no measure has been specified regarding its smallness. It is not worthwhile to try to obtain
numerically the stress intensity factors for values of r% less than 0-001 by the technique proposed
in this study, since we expect difficulties in the numerical solution when «; and a, become too
close to each other. Therefore, to make a proper comparison of the results of [11, 12,9] with
those of the present formulation, it is necessary to obtain some asymptotic solutions of the
integral equations presented here for small values of r%. It is hoped that such asymptotic
solutions will be taken up in a future study.

Wieselmann[16] used a polynomial approximation of the mapping function w({) and
attempted to obtain the stress intensity factors at the tips of the crack configuration same as that
considered here. In [16] ¢({) is expressed in the form of a power series and solutions are
obtained only for a few cases. It is of interest to compare these results {16] with ours (see Table 1).



The stress field in the neighborhood of a branched crack in an infinite elastic sheet 535

—-1-0.2
128
--0.3
100}
—1-0.4
0.75+
— —-05 =
W ¥
0.50f --0.6
N —~-07
028 AN
P2 43 I AN \
B | N
' T N
unTa \\ X o -08
.
0 1 1 1 } 1 1 ] \\ \ LN
0.001 0.002 0.005 g a.92 005 0.1 02 0.5 1.0

r£ ( Log.scale }

Fig. 5. Stress intensity factors at tip 2 for uniform tensile stress perpendicular to main crack at infinity.

Table 1

K, Ky

ri (‘] Ref.[16]  Presentstudy  Ref.[16]  Present study

45° 0:927 0-939 ~0:476 - 0-465
0-005
90° 0-351 0-346 —{-451 —-0-466

The above values are for the case of uniform tension perpendicular to the main crack at infinity.
In the polynomial approximation technique all corners are smoothened out, but the
characteristics of the cracktips are retained. In our solution no such smoothening is necessary
and we have shown the existence of the stress singularity at the re-entrant corner where the two
arms of the crack meet, although no attempt was made to evaluate the strength of the
local singular field. Considering this fact, the differences between the values reported in [16] and
the results of the present study are not significant.

Bowie and Freese [17] also attempted to obtain the stress intensity factors by a modified
mapping-collocation technique. Their results are in agreement with those shown in Figs. 4 and 5.
Some problems of branched cracks have been also considered by Palaniswamy (Ph. D. Thesis,
California Institute of Technology, 1972). It does not seem possible however, to compare his
results directly with those presented here. It may be noted that if we consider a crack
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Fig. 6. Stress intensity factors at tip 1 for uniform shear stress at infinity.
configuration with r¥=1 subjected to some particular types of traction at infinity the two
cracktips may experience the same loading conditions. One such case may be obtained from the

results of this study. K;and Ky for r$ = 1 at the two tips are listed in the following table, since some
of the values are not available from Figs. 4-7.

Table2(r¥=1)

8 K, Ku K K
T=1 15° 17512 0-0287 1-6619 -04777
Uniform tension 30°  1-6930 0-0407 1-3573 -0-8528
perpendicular to 45°  1-6127 0-0261 0-9322 —1-0499
main crack at 60° 1-5283  -0-0145 0-4865  —1:0392
infinity 75°  1-4547 ~0-0701 0-1203 —0-8429
90°  1-3984 -0-1230 -0-0921 -0-5269
S=1 15 01115 17808 07778  1.5706
Uniform shear 30°  0-1981 1:7974 1-3610 1-0160
stress at 45°  0-2454 1-8001 1-6064 0-2475
infinity 60° 0-2557 17628 1-4585 —0-5460

75° 0-2470 1:6664 0:9619 -1-1770
90°  0-2460 1-5072 0-2460  ~1-5072
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Fig. 7. Stress intensity factors at tip 2 for uniform shear stress at infinity.

The stress intensity factors due to the simultaneous application of T=1 and S =0-5tan ¢
may be computed from the above Table and it may be seen that K.' = K.°, where K, is the
complex stress intensity factor and the superscripts indicate the tips 1 and 2. The identity also
holds for the particular case S = 1, 8 = 90° for obvious reasons. From the results reported in this
study it is an easy matter to evaluate the strain energy release rates at each tip, since this rate is a
known function of the stress intensity factors. However, these values may not be of much use
since the branched crack considered here will not in general, extend in the direction of existing
branches.
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